

National Security Agency

Cybersecurity and Infrastructure Security Agency

Cybersecurity Technical Report

Kubernetes Hardening Guide

August 2022

U/OO/168286-21

PP-22-0324

Version 1.2

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 i

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Notices and history

Document change history
Date Version Description

August 2021 1.0 Initial publication

March 2022 1.1 Updated guidance based on industry feedback

August 2022 1.2 Corrected automountServiceAccountToken (Authentication and

Authorization), clarified ClusterRoleBinding (Appendix K)

Disclaimer of warranties and endorsement

The information and opinions contained in this document are provided "as is" and

without any warranties or guarantees. Reference herein to any specific commercial

products, process, or service by trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation, or favoring

by the United States Government, and this guide shall not be used for advertising or

product endorsement purposes.

Trademark recognition

Kubernetes is a registered trademark of The Linux Foundation. ▪ SELinux is a registered

trademark of the National Security Agency. ▪ AppArmor is a registered trademark of

SUSE LLC. ▪ Windows and Hyper-V are registered trademarks of Microsoft Corporation.

▪ ETCD is a registered trademark of CoreOS, Inc. ▪ Syslog-ng is a registered trademark

of One Identity Software International Designated Activity Company. ▪ Prometheus is a

registered trademark of The Linux Foundation. ▪ Grafana is a registered trademark of

Raintank, Inc. dba Grafana Labs ▪ Elasticsearch and ELK Stack are registered

trademarks of Elasticsearch B.V.

Copyright recognition

Information, examples, and figures in this document are based on Kubernetes

Documentation by The Kubernetes Authors, published under a Creative Commons

Attribution 4.0 license.

Acknowledgements

NSA and CISA acknowledge the feedback received from numerous partners and the

cybersecurity community on the previous version of this report, and thank them for their

help in making it better. Changes have been incorporated where appropriate.

https://kubernetes.io/docs/
https://kubernetes.io/docs/
https://git.k8s.io/website/LICENSE
https://git.k8s.io/website/LICENSE

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 ii

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Publication information

Author(s)

National Security Agency (NSA)
Cybersecurity Directorate
Endpoint Security

Cybersecurity and Infrastructure Security Agency (CISA)

Contact information

Client Requirements / General Cybersecurity Inquiries:
Cybersecurity Requirements Center, 410-854-4200, Cybersecurity_Requests@nsa.gov

Media inquiries / Press Desk:
Media Relations, 443-634-0721, MediaRelations@nsa.gov

For incident response resources, contact CISA at CISAServiceDesk@cisa.dhs.gov.

Purpose

NSA and CISA developed this document in furtherance of their respective cybersecurity

missions, including their responsibilities to develop and issue cybersecurity

specifications and mitigations. This information may be shared broadly to reach all

appropriate stakeholders.

mailto:Cybersecurity_Requests@nsa.gov
mailto:MediaRelations@nsa.gov
mailto:CISAServiceDesk@cisa.dhs.gov

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 iii

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Executive summary

Kubernetes® is an open-source system that automates the deployment, scaling, and

management of applications run in containers, and is often hosted in a cloud

environment. Using this type of virtualized infrastructure can provide several flexibility

and security benefits compared to traditional, monolithic software platforms. However,

securely managing everything from microservices to the underlying infrastructure

introduces other complexities. This report is designed to help organizations handle

Kubernetes-associated risks and enjoy the benefits of using this technology.

Three common sources of compromise in Kubernetes are supply chain risks, malicious

threat actors, and insider threats. Supply chain risks are often challenging to mitigate

and can arise in the container build cycle or infrastructure acquisition. Malicious threat

actors can exploit vulnerabilities and misconfigurations in components of the

Kubernetes architecture, such as the control plane, worker nodes, or containerized

applications. Insider threats can be administrators, users, or cloud service providers.

Insiders with special access to an organization’s Kubernetes infrastructure may be able

to abuse these privileges.

This guide describes the security challenges associated with setting up and securing a

Kubernetes cluster. It includes strategies for system administrators and developers of

National Security Systems, helping them avoid common misconfigurations and

implement recommended hardening measures and mitigations when deploying

Kubernetes. This guide details the following mitigations:

 Scan containers and Pods for vulnerabilities or misconfigurations.

 Run containers and Pods with the least privileges possible.

 Use network separation to control the amount of damage a compromise can

cause.

 Use firewalls to limit unneeded network connectivity and use encryption to

protect confidentiality.

 Use strong authentication and authorization to limit user and administrator

access as well as to limit the attack surface.

 Capture and monitor audit logs so that administrators can be alerted to potential

malicious activity.

 Periodically review all Kubernetes settings and use vulnerability scans to ensure

risks are appropriately accounted for and security patches are applied.

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 iv

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

For additional security hardening guidance, see the Center for Internet Security

Kubernetes benchmarks, the Docker and Kubernetes Security Technical

Implementation Guides, the Cybersecurity and Infrastructure Security Agency (CISA)

analysis report, and Kubernetes documentation [1], [2], [3], [6].

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 v

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Contents

Kubernetes Hardening Guide ... i

Executive summary ... iii

Contents .. v

Introduction ... 1

Recommendations ... 2
Architectural overview ... 4

Threat model ... 6

Kubernetes Pod security .. 8

“Non-root” containers and “rootless” container engines ... 9
Immutable container file systems ... 10
Building secure container images .. 10
Pod security enforcement .. 12
Protecting Pod service account tokens .. 12
Hardening container environments .. 13

Network separation and hardening ... 14

Namespaces ... 14
Network policies .. 15
Resource policies .. 17
Control plane hardening .. 18

Etcd ... 19
Kubeconfig Files .. 19

Worker node segmentation .. 19
Encryption ... 20
Secrets .. 20
Protecting sensitive cloud infrastructure .. 21

Authentication and authorization .. 22

Authentication .. 22
Role-based access control .. 23

Audit Logging and Threat Detection ... 27

Logging ... 27

Kubernetes native audit logging configuration .. 29
Worker node and container logging ... 30
Seccomp: audit mode .. 32
Syslog .. 32
SIEM platforms .. 33
Service meshes ... 34
Fault tolerance ... 35

Threat Detection .. 36

Alerting .. 37

Tools ... 38

Upgrading and application security practices .. 40

Works cited ... 41

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 vi

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Appendix A: Example Dockerfile for non-root application .. 42

Appendix B: Example deployment template for read-only file system 43

Appendix C: Pod Security Policies (deprecated) .. 44

Appendix D: Example Pod Security Policy ... 46

Appendix E: Example namespace ... 48

Appendix F: Example network policy .. 49

Appendix G: Example LimitRange ... 50

Appendix H: Example ResourceQuota .. 51

Appendix I: Example encryption .. 52

Appendix J: Example KMS configuration ... 53

Appendix K: Example pod-reader RBAC Role .. 54

Appendix L: Example RBAC RoleBinding and ClusterRoleBinding.................................... 55

Appendix M: Audit Policy ... 57

Appendix N: Example Flags to Enable Audit Logging ... 59

Figures

Figure 1: High-level view of Kubernetes cluster components .. 1

Figure 2: Kubernetes architecture .. 4

Figure 3: Example of container supply chain dependencies introducing malicious code
into a cluster .. 7

Figure 4: Pod components with sidecar proxy as logging container 9

Figure 5: A hardened container build workflow ..11

Figure 6: Possible Role, ClusterRole, RoleBinding, and ClusterRoleBinding combinations
to assign access ...25

Figure 7: Cluster leveraging service mesh to integrate logging with network security35

Tables

Table I: Control plane ports ..18

Table II: Worker node ports ..20

Table III: Remote logging configuration ..31

Table IV: Detection recommendations ..36

Table V: Pod Security Policy components ..44

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 1

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Introduction

Kubernetes, frequently abbreviated “K8s” because there are 8 letters between K and S,

is an open-source container-orchestration system used to automate deploying, scaling,

and managing containerized applications. As illustrated in the following figure, it

manages all elements that make up a cluster, from each microservice in an application

to entire clusters. Using containerized applications as microservices provides more

flexibility and security benefits compared to monolithic software platforms, but also can

introduce other complexities.

Figure 1: High-level view of Kubernetes cluster components

This guide focuses on security challenges and suggests hardening strategies for

administrators of National Security Systems and critical infrastructure. Although this

guide is tailored to National Security Systems and critical infrastructure organizations,

NSA and CISA also encourage administrators of federal and state, local, tribal, and

territorial (SLTT) government networks to implement the recommendations in this guide.

Kubernetes clusters can be complex to secure and are often abused in compromises

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 2

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

that exploit their misconfigurations. This guide offers specific security configurations that

can help build more secure Kubernetes clusters.

Recommendations

A summary of the key recommendations from each section are:

 Kubernetes Pod security

 Use containers built to run applications as non-root users.

 Where possible, run containers with immutable file systems.

 Scan container images for possible vulnerabilities or misconfigurations.

 Use a technical control to enforce a minimum level of security including:

 Preventing privileged containers.

 Denying container features frequently exploited to breakout, such

as hostPID, hostIPC, hostNetwork, allowedHostPath.

 Rejecting containers that execute as the root user or allow

elevation to root.

 Hardening applications against exploitation using security services

such as SELinux®, AppArmor®, and secure computing mode

(seccomp).

 Network separation and hardening

 Lock down access to control plane nodes using a firewall and role-based

access control (RBAC). Use separate networks for the control plane

components and nodes.

 Further limit access to the Kubernetes etcd server.

 Configure control plane components to use authenticated, encrypted

communications using Transport Layer Security (TLS) certificates.

 Encrypt etcd at rest and use a separate TLS certificate for communication.

 Set up network policies to isolate resources. Pods and services in different

namespaces can still communicate with each other unless additional

separation is enforced.

 Create an explicit deny network policy.

 Place all credentials and sensitive information encrypted in Kubernetes

Secrets rather than in configuration files. Encrypt Secrets using a strong

encryption method. Secrets are not encrypted by default.

 Authentication and authorization

 Disable anonymous login (enabled by default).

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 3

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

 Use strong user authentication.

 Create RBAC policies with unique roles for users, administrators,

developers, service accounts, and infrastructure team.

 Audit Logging and Threat Detection

 Enable audit logging (disabled by default).

 Persist logs to ensure availability in the case of node, Pod, or container-

level failure.

 Configure logging throughout the environment (e.g., cluster application

program interface (API) audit event logs, cluster metric logs, application

logs, Pod seccomp logs, repository audit logs, etc.).

 Aggregate logs external to the cluster.

 Implement a log monitoring and alerting system tailored to the

organization’s cluster.

 Upgrading and application security practices

 Promptly apply security patches and updates.

 Perform periodic vulnerability scans and penetration tests.

 Uninstall and delete unused components from the environment.

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 4

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Architectural overview

Kubernetes uses a cluster architecture. A Kubernetes cluster comprises many control

planes and one or more physical or virtual machines called “worker nodes.” The worker

nodes host Pods, which contain one or more containers.

A container is a runtime environment containing a software package and all its

dependencies. Container images are standalone collections of the executable code and

content that are used to populate a container environment as illustrated in the following

figure:

Figure 2: Kubernetes architecture

The control plane makes decisions about the cluster. This includes scheduling

containers to run, detecting/responding to failures, and starting new Pods when the

number of replicas listed in a Deployment file is unsatisfied. The following logical

components are all part of the control plane:

 Controller manager – Monitors the Kubernetes cluster to detect and maintain

several aspects of the Kubernetes environment including joining Pods to

services, maintaining the correct number of Pods in a set, and responding to the

loss of nodes.

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 5

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

 Cloud controller manager – An optional component used for cloud-based

deployments. The cloud controller interfaces with the cloud service provider

(CSP) to manage load balancers and virtual networking for the cluster.

 Kubernetes application programming interface (API) server – The interface

through which administrators direct Kubernetes. As such, the API server is

typically exposed outside of the control plane. It is designed to scale and may

exist on multiple control plane nodes.

 Etcd® – The persistent backing store where all information regarding the state of

the cluster is kept. Etcd is not intended to be manipulated directly but should be

managed through the API server.

 Scheduler – Tracks the status of worker nodes and determines where to run

Pods. Kube-scheduler is intended to be accessible only from within the control

plane.

Kubernetes worker nodes are physical or virtual machines dedicated to running

containerized applications for the cluster. In addition to running a container engine,

worker nodes host the following two services that allow orchestration from the control

plane:

 Kubelet – Runs on each worker node to orchestrate and verify Pod execution.

 Kube-proxy – A network proxy that uses the host’s packet filtering capability to

ensure correct packet routing in the Kubernetes cluster.

Clusters are commonly hosted using a CSP Kubernetes service or an on-premises

Kubernetes service; CSPs often provide additional features. They administer most

aspects of managed Kubernetes services; however, organizations may need to handle

some Kubernetes service aspects, such as authentication and authorization, because

default CSP configurations are typically not secure. When designing a Kubernetes

environment, organizations should understand their responsibilities in securely

maintaining the cluster.

▲Return to Contents

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 6

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Threat model

Kubernetes can be a valuable target for data or compute power theft. While data theft is

traditionally the primary motivation, cyber actors seeking computational power (often for

cryptocurrency mining) are also drawn to Kubernetes to harness the underlying

infrastructure. In addition to resource theft, cyber actors may target Kubernetes to cause

a denial of service. The following threats represent some of the most likely sources of

compromise for a Kubernetes cluster:

 Supply Chain – Attack vectors to the supply chain are diverse and challenging

to mitigate. The risk is that an adversary may subvert any element that makes up

a system. This includes product components, services, or personnel that help

supply the end product. Additional supply chain risks can include third-party

software and vendors used to create and manage the Kubernetes cluster. Supply

chain compromises can affect Kubernetes at multiple levels including:

 Container/application level – The security of applications and their third-

party dependencies running in Kubernetes rely on the trustworthiness of

the developers and the defense of the development infrastructure. A

malicious container or application from a third party could provide cyber

actors with a foothold in the cluster.

 Container runtime – Each node has a container runtime installed to load

container images from the repository. It monitors local system resources,

isolates system resources for each container, and manages container

lifecycle. A vulnerability in the container runtime could lead to insufficient

separation between containers.

 Infrastructure – The underlying systems hosting Kubernetes have their

own software and hardware dependencies. Any compromise of systems

used as worker nodes or as part of the control plane could provide cyber

actors with a foothold in the cluster.

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 7

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Figure 3: Example of container supply chain dependencies introducing malicious code into a cluster

 Malicious Threat Actor – Malicious actors often exploit vulnerabilities or stolen

credentials from social engineering to gain access from a remote location.

Kubernetes architecture exposes several APIs that cyber actors could potentially

leverage for remote exploitation including:

 Control plane – The Kubernetes control plane has many components that

communicate to track and manage the cluster. Cyber actors frequently

take advantage of exposed control plane components lacking appropriate

access controls.

 Worker nodes – In addition to running a container engine, worker nodes

host the kubelet and kube-proxy service, which are potentially exploitable

by cyber actors. Additionally, worker nodes exist outside of the locked-

down control plane and may be more accessible to cyber actors.

 Containerized applications – Applications running inside the cluster are

common targets. They are frequently accessible outside of the cluster,

making them reachable by remote cyber actors. An actor can then pivot

from an already compromised Pod or escalate privileges within the cluster

using an exposed application’s internally accessible resources.

 Insider Threat – Threat actors can exploit vulnerabilities or use privileges given

to the individual while working within the organization. Individuals from within the

organization have special knowledge and privileges that can be used against

Kubernetes clusters.

 Administrator – Kubernetes administrators have control over running

containers, including executing arbitrary commands inside containerized

environments. Kubernetes-enforced RBAC authorization can reduce the

risk by restricting access to sensitive capabilities. However, because

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 8

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Kubernetes lacks two-person integrity controls, at least one administrative

account must be capable of gaining control of the cluster. Administrators

often have physical access to the systems or hypervisors, which could

also be used to compromise the Kubernetes environment.

 User – Containerized application users may know and have credentials to

access containerized services in the Kubernetes cluster. This level of

access could provide sufficient means to exploit either the application itself

or other cluster components.

 Cloud service or infrastructure provider – Access to physical systems or

hypervisors managing Kubernetes nodes could be used to compromise a

Kubernetes environment. CSPs often have layers of technical and

administrative controls to protect systems from privileged administrators.

▲Return to Contents

Kubernetes Pod security

Pods are the smallest deployable Kubernetes unit and consist of one or more

containers. Pods are often a cyber actor’s initial execution environment upon exploiting

a container. For this reason, Pods should be hardened to make exploitation more

difficult and to limit the impact of a successful compromise. The following figure

illustrates the components of a Pod and possible attack surface.

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 9

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Figure 4: Pod components with sidecar proxy as logging container

“Non-root” containers and “rootless” container engines

By default, many container services run as the privileged root user, and applications

execute inside the container as root despite not requiring privileged execution.

Preventing root execution by using non-root containers or a rootless container engine

limits the impact of a container compromise. Both methods affect the runtime

environment significantly, so applications should be thoroughly tested to ensure

compatibility.

Non-root containers – Container engines allow containers to run applications as a

non-root user with non-root group membership. Typically, this non-default setting is

configured when the container image is built. For an example Dockerfile that runs an

application as a non-root user, refer to Appendix A: Example Dockerfile for non-

root application. Alternatively, Kubernetes can load containers into a Pod with

SecurityContext:runAsUser specifying a non-zero user. While the runAsUser

directive effectively forces non-root execution at deployment, NSA and CISA

encourage developers to build container applications to execute as a non-root user.

Having non-root execution integrated at build time provides better assurance that

applications will function correctly without root privileges.

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 10

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Rootless container engines – Some container engines can run in an unprivileged

context rather than using a daemon running as root. In this scenario, execution

would appear to use the root user from the containerized application’s perspective,

but execution is remapped to the engine’s user context on the host. While rootless

container engines add an effective layer of security, many are currently released as

experimental and should not be used in a production environment. Administrators

should be aware of this emerging technology and adopt rootless container engines

when vendors release a stable version compatible with Kubernetes.

Immutable container file systems

By default, containers are permitted mostly unrestricted execution within their own

context. A cyber actor who has gained execution in a container can create files,

download scripts, and modify the application within the container. Kubernetes can lock

down a container’s file system, thereby preventing many post-exploitation activities.

However, these limitations also affect legitimate container applications and can

potentially result in crashes or anomalous behavior.

To prevent damaging legitimate applications, Kubernetes administrators can mount

secondary read/write file systems for specific directories where applications require

write access. For an example immutable container with a writable directory, refer to

Appendix B: Example deployment template for read-only filesystem.

Building secure container images

Container images are usually created by either building a container from scratch or by

building on top of an existing image pulled from a repository. Repository controls within

the developer environment can be used to restrict developers to using only trusted

repositories. Specific controls vary depending on the environment but may include both

platform-level restrictions, such as admission controls, and network-level restrictions.

Kubernetes admission controllers, third-party tools, and some CSP-native solutions can

restrict entry so that only digitally signed images can execute in the cluster.

In addition to using trusted repositories to build containers, image scanning is key to

ensuring deployed containers are secure. Throughout the container build workflow,

images should be scanned to identify outdated libraries, known vulnerabilities, or

misconfigurations, such as insecure ports or permissions. Scanning should also provide

the flexibility to disregard false positives for vulnerability detection where knowledgeable

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 11

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

cybersecurity professionals have deemed alerts to be inaccurate. As illustrated in the

following figure, one approach to implementing image scanning is to use an admission

controller. An admission controller is a Kubernetes-native feature that can intercept and

process requests to the Kubernetes API prior to persistence of the object, but after the

request is authenticated and authorized. A custom or proprietary webhook can be

implemented to scan any image before it is deployed in the cluster. This admission

controller can block deployments if the image does not comply with the organization’s

security policies defined in the webhook configuration [4].

Figure 5: A hardened container build workflow

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 12

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Pod security enforcement

Enforcing security requirements on Pods can be accomplished natively in Kubernetes

through two mechanisms:

1. A beta1 release feature called Pod Security Admission – Production Kubernetes

administrators should adopt Pod Security Admission, as the feature is enabled by

default in Kubernetes version 1.23. Pod Security Admission is based around

categorizing pods as privileged, baseline, and restricted and provides a more

straightforward implementation than PSPs. More information about Pod Security

Admission is available in the online documentation2.

2. A deprecated feature called Pod Security Policies (PSPs) – Administrators using

PSPs while transitioning to Pod Security Admission can use information in

Appendix C: Pod Security Policies to enhance their PSPs.

In addition to native Kubernetes solutions, third-party solutions often implemented as

Kubernetes admission controllers can provide additional fine-grained policy control.

While these solutions are beyond the scope of this document, administrators may

explore the products available for their environment to determine the best solution for

their needs.

Protecting Pod service account tokens

By default, Kubernetes automatically provisions a service account when creating a Pod

and mounts the account’s secret token within the Pod at runtime. Many containerized

applications do not require direct access to the service account as Kubernetes

orchestration occurs transparently in the background. If an application is compromised,

account tokens in Pods can be gleaned by cyber actors and used to further compromise

the cluster. When an application does not need to access the service account directly,

Kubernetes administrators should ensure that Pod specifications disable the secret

token being mounted. This can be accomplished using the

“automountServiceAccountToken: false” directive in the Pod’s YAML

specification.

In some cases, containerized applications use provisioned service account tokens to

authenticate to external services, such as cloud platforms. In these cases, it can be

1 Beta releases of software have generally passed some level of quality assurance and contain most planned functionality

2 https://kubernetes.io/docs/concepts/security/pod-security-admission/

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 13

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

infeasible to disable the account token. Instead, cluster administrators should ensure

that RBAC is implemented to restrict Pod privileges within the cluster. For more

information on RBAC, refer to the section on authentication and authorization.

Hardening container environments

Some platforms and container engines provide additional options or tools to harden

containerized environments. For example:

 Hypervisor-backed containerization – Hypervisors rely on hardware to enforce

the virtualization boundary rather than the operating system. Hypervisor isolation

is more secure than traditional container isolation. Container engines running on

the Windows® operating system can be configured to use the built-in Windows

hypervisor, Hyper-V®, to enhance security. Additionally, some security-focused

container engines natively deploy each container within a lightweight hypervisor

for defense-in-depth. Hypervisor-backed containers mitigate container breakouts.

 Kernel-based solutions – The seccomp tool, which is disabled by default, can

be used to limit a container’s system call abilities, thereby lowering the kernel’s

attack surface. Seccomp can be enforced through a previously described Pod

policy. For more information on Seccomp, refer to Audit Logging and Threat

Detection.

 Application sandboxes – Some container engine solutions offer the option to

add a layer of isolation between the containerized application and the host

kernel. This isolation boundary forces the application to operate within a virtual

sandbox thereby protecting the host operating system from malicious or

destructive operations.

▲Return to Contents

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 14

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Network separation and hardening

Cluster networking is a central concept of Kubernetes. Communication among

containers, Pods, services, and external services must be taken into consideration. By

default, Kubernetes resources are not isolated and do not prevent lateral movement or

escalation if a cluster is compromised. Resource separation and encryption can be an

effective way to limit a cyber actor’s movement and escalation within a cluster.

Namespaces

Kubernetes namespaces are one way to partition cluster resources among multiple

individuals, teams, or applications within the same cluster. By default, namespaces are

not automatically isolated. However, namespaces do assign a label to a scope, which

can be used to specify authorization rules via RBAC and networking policies. In addition

to policies that limit access to resources by namespace, resource policies can limit

storage and compute resources to provide better control over Pods at the namespace

level.

There are three namespaces by default, and they cannot be deleted:

 kube-system (for Kubernetes components)

 kube-public (for public resources)

 default (for user resources)

User Pods should not be placed in kube-system or kube-public, as these are reserved

for cluster services. A YAML file, shown in Appendix E: Example namespace, can be

used to create new namespaces. Pods and services in different namespaces can still

communicate with each other unless additional separation is enforced.

Key points

 Use network policies and firewalls to separate and isolate resources.

 Secure the control plane.

 Encrypt traffic and sensitive data (such as Secrets) at rest.

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 15

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Network policies

Every Pod gets its own cluster-private IP address and can be treated similarly to virtual

machines (VMs) or physical hosts with regard to port allocation, naming, service

discovery, and load balancing. Kubernetes can shift Pods to other nodes and recreate

Pods in a Deployment that have died. When that happens, the Pod IP addresses can

change, which means applications should not depend on the Pod IP being static.

A Kubernetes Service is used to solve the issue of changing IP addresses. A Service is

an abstract way to assign a unique IP address to a logical set of Pods selected using a

label in the Pod configuration. The address is tied to the lifespan of the Service and will

not change while the Service is alive. The communication to a Service is automatically

load-balanced among the Pods that are members of the Service.

Services can be exposed externally using NodePorts or LoadBalancers, and internally.

To expose a Service externally, configure the Service to use TLS certificates to encrypt

traffic. Once TLS is configured, Kubernetes supports two ways to expose the Service to

the Internet: NodePorts and LoadBalancers.

Adding type: NodePort to the Service specification file will assign a random port to

be exposed to the Internet using the cluster’s public IP address. The NodePort can also

be assigned manually if desired. Changing the type to LoadBalancer can be used in

conjunction with an external load balancer. Ingress and egress traffic can be controlled

with network policies. Although Services cannot be selected by name in a network

policy, the Pods can be selected using the label that is used in the configuration to

select the Pods for the Service.

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 16

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Network policies control traffic flow between Pods,

namespaces, and external IP addresses. By default,

no network policies are applied to Pods or

namespaces, resulting in unrestricted ingress and

egress traffic within the Pod network. Pods become

isolated through a network policy that applies to the

Pod or the Pod’s namespace. Once a Pod is

selected in a network policy, it rejects any

connections that are not specifically allowed by any

applicable policy object.

To create network policies, a container network

interface (CNI) plugin that supports the

NetworkPolicy API is required. Pods are selected

using the podSelector and/or the

namespaceSelector options. For an example network policy, refer to Appendix F:

Example network policy.

Network policy formatting may differ depending on the CNI plugin used for the cluster.

Administrators should use a default policy selecting all Pods to deny all ingress and

egress traffic and ensure any unselected Pods are isolated. Additional policies could

then relax these restrictions for permissible connections.

External IP addresses can be used in ingress and egress policies using ipBlock, but

different CNI plugins, cloud providers, or service implementations may affect the order

of NetworkPolicy processing and the rewriting of addresses within the cluster.

Network policies can also be used in conjunction with firewalls and other external tools

to create network segmentation. Splitting the network into separate sub-networks or

security zones helps isolate public-facing applications from sensitive internal resources.

One of the major benefits to network segmentation is limiting the attack surface and

opportunity for lateral movement. In Kubernetes, network segmentation can be used to

separate applications or types of resources to limit the attack surface.

Network Policies Checklist

 Use a CNI plugin that supports

NetworkPolicy API

 Create policies that select Pods using

podSelector and/or the

namespaceSelector

 Use a default policy to deny all ingress

and egress traffic. Ensures unselected

Pods are isolated to all namespaces

except kube-system

 Use LimitRange and ResourceQuota

policies to limit resources on a

namespace or Pod level

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 17

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Resource policies

LimitRanges, ResourceQuotas, and Process ID Limits restrict resource usage for

namespaces, nodes, or Pods. These policies are important to reserve compute and

storage space for a resource and avoid resource exhaustion.

A LimitRange policy constrains individual resources per Pod or container within a

particular namespace, e.g., by enforcing maximum compute and storage resources.

Only one LimitRange constraint can be created per namespace. For an example YAML

file, refer to Appendix G: Example LimitRange.

Unlike LimitRange policies that apply to each Pod or container individually,

ResourceQuotas are restrictions placed on the aggregate resource usage for an entire

namespace, such as limits placed on total CPU and memory usage. For an example

ResourceQuota policy, refer to Appendix H: Example ResourceQuota. If a user tries

to create a Pod that violates a LimitRange or ResourceQuota policy, the Pod creation

fails.

Process IDs (PIDs) are a fundamental resource on nodes and can be exhausted without

violating other resource limits. PID exhaustion prevents host daemons (such as

kubelet and kube-proxy) from running. Administrators can use node PID limits to

reserve a specified number of PIDs for system use and Kubernetes system daemons.

Pod PID limits are used to limit the number of processes running on each Pod. Eviction

policies can be used to terminate a Pod that is misbehaving and consuming abnormal

resources. However, eviction policies are calculated and enforced periodically and do

not enforce the limit.

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 18

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Control plane hardening

The control plane is the core of Kubernetes and allows

users to view containers, schedule new Pods, read

Secrets, and execute commands in the cluster. Because

of these sensitive capabilities, the control plane should

be highly protected. In addition to secure configurations

such as TLS encryption, RBAC, and a strong

authentication method, network separation can help

prevent unauthorized users from accessing the control

plane. The Kubernetes API server runs on port 6443,

which should be protected by a firewall to accept only

expected traffic. The Kubernetes API server should not

be exposed to the Internet or an untrusted network.

Network policies can be applied to the kube-system namespace to limit internet access

to the kube-system. If a default deny policy is implemented to all namespaces, the

kube-system namespace must still be able to communicate with other control plane

segments and worker nodes.

The following table lists the control plane ports and services:

Table I: Control plane ports

Protocol Direction Port Range Purpose

TCP Inbound 6443 Kubernetes API server

TCP Inbound 2379-2380 etcd server client API

TCP Inbound 10250 kubelet API

TCP Inbound 10259 kube-scheduler

TCP Inbound 10257 kube-controller-manager

Steps to secure the control plane

1. Set up TLS encryption

2. Set up strong authentication

methods

3. Disable access to internet and

unnecessary, or untrusted networks

4. Use RBAC policies to restrict

access

5. Secure the etcd datastore with

authentication and RBAC policies

6. Protect kubeconfig files from

unauthorized modifications

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 19

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Etcd

The etcd backend database stores state information and cluster Secrets. It is a critical

control plane component, and gaining write access to etcd could give a cyber actor root

access to the entire cluster. The etcd server should be configured to trust only

certificates assigned to the API server. Etcd can be run on a separate control plane

node, allowing a firewall to limit access to only the API servers. This limits the attack

surface when the API server is protected

with the cluster’s authentication method

and RBAC policies to restrict users.

Administrators should set up TLS

certificates to enforce Hypertext Transfer

Protocol Secure (HTTPS) communication

between the etcd server and API servers.

Using a separate certificate authority (CA)

for etcd may also be beneficial, as it trusts

all certificates issued by the root CA by

default.

Kubeconfig Files

The kubeconfig files contain sensitive information about clusters, users, namespaces,

and authentication mechanisms. Kubectl uses the configuration files stored in the

$HOME/.kube directory on the worker node and control plane local machines. Cyber

actors can exploit access to this configuration directory to gain access to and modify

configurations or credentials to further compromise the cluster. The configuration files

should be protected from unintended changes, and unauthenticated non-root users

should be blocked from accessing the files.

Worker node segmentation

A worker node can be a virtual or physical machine, depending on the cluster’s

implementation. Because nodes run the microservices and host the web applications for

the cluster, they are often the target of exploits. If a node becomes compromised, an

administrator should proactively limit the attack surface by separating the worker nodes

from other network segments that do not need to communicate with the worker nodes or

Kubernetes services.

The etcd backend database

is a critical control plane

component and the most

important piece to secure

within the control plane.

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 20

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Depending on the network, a firewall can be used to separate internal network

segments from the external-facing worker nodes or the entire Kubernetes service.

Examples of services that may need to be separated from the possible attack surface of

the worker nodes are confidential databases or internal services that would not need to

be internet accessible.

The following table lists the worker node ports and services:

Table II: Worker node ports

Protocol Direction Port Range Purpose

TCP Inbound 10250 kubelet API

TCP Inbound 30000-32767 NodePort Services

Encryption

Administrators should configure all traffic in the Kubernetes cluster—including between

components, nodes, and the control plane—to use TLS 1.2 or 1.3 encryption.

Encryption can be set up during installation or afterward using TLS bootstrapping,

detailed in the Kubernetes documentation, to create and distribute certificates to nodes.

For all methods, certificates must be distributed among nodes to communicate securely.

Secrets

Kubernetes Secrets maintain sensitive information, such as passwords, OAuth tokens,

and Secure Shell (SSH) keys. Storing sensitive information in Secrets provides greater

access control than storing passwords or tokens in YAML files, container images, or

environment variables. By default, Kubernetes stores Secrets as unencrypted base64-

encoded strings that can be retrieved by anyone with API access. Access can be

restricted by applying RBAC policies to the secrets resource.

Secrets can be encrypted by configuring data-

at-rest encryption on the API server or by

using an external key management service

(KMS), which may be available through a

cloud provider. To enable Secret data-at-rest

encryption using the API server,

administrators should change the kube-

apiserver manifest file to execute using the

--encryption-provider-config

argument.

By default, Secrets are

stored as unencrypted

base64-encoded strings and

can be retrieved by anyone

with API access.

https://kubernetes.io/docs/tasks/administer-cluster/securing-a-cluster/

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 21

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

For an example encryption-provider-config file, refer to Appendix I: Example

encryption. Using a KMS provider prevents the raw encryption key from being stored

on the local disk. To encrypt Secrets with a KMS provider, the encryption-

provider-config file should specify the KMS provider. For an example, refer to

Appendix J: Example KMS configuration.

After applying the encryption-provider-config file, administrators should run the

following command to read and encrypt all Secrets:

kubectl get secrets --all-namespaces -o json | kubectl replace -f -

Protecting sensitive cloud infrastructure

Kubernetes is often deployed on VMs in a cloud environment. As such, administrators

should carefully consider the attack surface of the VMs on which the Kubernetes worker

nodes are running. In many cases, Pods running on these VMs have access to

sensitive cloud metadata services on a non-routable address. These metadata services

provide cyber actors with information about the cloud infrastructure and possibly even

short-lived credentials for cloud resources.

Cyber actors abuse these metadata services for privilege escalation [5]. Kubernetes

administrators should prevent Pods from accessing cloud metadata services by using

network policies or through the cloud configuration policy. Because these services vary

based on the cloud provider, administrators should follow vendor guidance to harden

these access vectors.

▲Return to Contents

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 22

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Authentication and authorization

Authentication and authorization are the primary mechanisms to restrict access to

cluster resources. Cyber actors can scan for well-known Kubernetes ports and access

the cluster’s database or make API calls without being authenticated if the cluster is

misconfigured. Several user authentication mechanisms are supported but not enabled

by default.

Authentication

Kubernetes clusters have two types of users:

 Service accounts

 Normal user accounts

Service accounts handle API requests on behalf of Pods. Authentication is typically

managed automatically by Kubernetes through the ServiceAccount Admission

Controller using bearer tokens. When the admission controller is active, it checks

whether Pods have an attached service account. If the Pod definition does not specify a

service account, the admission controller attaches the default service account for the

namespace. The admission controller will not attach the default service account if the

Pod definition prohibits the addition of the service token by setting

automountServiceAccountToken or automountServiceAccounttoken to

false. Service accounts can also be individually created to grant specific permissions.

When Kubernetes creates the service account, it creates a service account Secret and

automatically modifies the Pod to use the Secret. The service account token Secret

contains credentials for accessing the API. If left unsecured or unencrypted, service

account tokens could be used from outside of the cluster by attackers. Because of this

risk, access to Pod Secrets should be restricted to those with a need to view them,

using Kubernetes RBAC.

For normal users and admin accounts, there is not an automatic authentication method.

Administrators must implement an authentication method or delegate authentication to a

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 23

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

third-party service. Kubernetes assumes that a cluster-independent service manages

user authentication. The Kubernetes documentation lists several ways to implement

user authentication including X509 client certificates, bootstrap tokens, and OpenID

tokens. At least one user authentication method should be implemented. When multiple

authentication methods are implemented, the first module to successfully authenticate

the request short-circuits the evaluation.

Administrators should not use weak

methods, such as static password files, as

weak methods could allow cyber actors to

authenticate as legitimate users.

Anonymous requests are requests that are

not rejected by other configured

authentication methods and are not tied to

any individual user or Pod. In a server setup

for token authentication with anonymous requests enabled, a request without a token

present would be performed as an anonymous request. In Kubernetes 1.6 and newer,

anonymous requests are enabled by default. When RBAC is enabled, anonymous

requests require explicit authorization of the system:anonymous user or

system:unauthenticated group. Anonymous requests should be disabled by

passing the --anonymous-auth=false option to the API server. Leaving anonymous

requests enabled could allow a cyber actor to access cluster resources without

authentication.

Role-based access control

RBAC, enabled by default, is one method to control access to cluster resources based

on the roles of individuals within an organization. RBAC can be used to restrict access

for user accounts and service accounts. To check if RBAC is enabled in a cluster using

kubectl, execute kubectl api-version. The API version for

.rbac.authorization.k8s.io/v1 should be listed if RBAC is enabled. Cloud

Kubernetes services may have a different way of checking whether RBAC is enabled for

the cluster. If RBAC is not enabled, start the API server with the --authorization-

mode flag in the following command:

kube-apiserver --authorization-mode=RBAC

Kubernetes assumes that a

cluster-independent service

manages user

authentication.

https://kubernetes.io/docs/reference/access-authn-authz/authentication

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 24

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Leaving authorization-mode flags, such as AlwaysAllow, in place allows all

authorization requests, effectively disabling all authorization and limiting the ability to

enforce least privilege for access.

Two types of permissions can be set:

 Roles – Set permissions for particular namespaces

 ClusterRoles – Set permissions across all cluster resources regardless of

namespace

Both Roles and ClusterRoles can only be used to add permissions. There are no deny

rules. If a cluster is configured to use RBAC and anonymous access is disabled, the

Kubernetes API server will deny permissions not explicitly allowed. For an example

RBAC Role, refer to Appendix K: Example pod-reader RBAC Role.

A Role or ClusterRole defines a permission but does not tie the permission to a user. As

illustrated in the following figure, RoleBindings and ClusterRoleBindings are used to tie

a Role or ClusterRole to a user, group, or service account. RoleBindings grant

permissions in Roles or ClusterRoles to users, groups, or service accounts in a defined

namespace. ClusterRoles are created independent of namespaces and can be used

multiple times in conjunction with a RoleBinding to limit the namespace scope.

This is useful when users, groups, or service accounts require similar permissions in

multiple namespaces. One ClusterRole can be used several times with different

RoleBindings to limit scope to different individual users, groups, or service accounts.

ClusterRoleBindings grant users, groups, or service accounts ClusterRoles across all

cluster resources. For an example of RBAC RoleBinding and ClusterRoleBinding, refer

to Appendix L: Example RBAC RoleBinding and ClusterRoleBinding.

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 25

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Figure 6: Possible Role, ClusterRole, RoleBinding, and ClusterRoleBinding combinations to assign access

To create or update Roles and ClusterRoles, a user must have the permissions

contained in the new role at the same scope or possess explicit permission to perform

the escalate verb on the Roles or ClusterRoles resources in the

rbac.authorization.k8s.io API group. After a binding is created, the Role or

ClusterRole is immutable. The binding must be deleted to change a role.

Privileges assigned to users, groups, and service accounts should follow the principle of

least privilege, allowing only required permissions to complete tasks. User groups can

make creating Roles easier to manage. Unique permissions are required for different

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 26

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

groups, such as users, administrators, developers, and the infrastructure team. Each

group needs access to different resources and should not have permissions to edit or

view other groups’ resources. Users, user groups, and service accounts should be

limited to interact and view specific namespaces where required resources reside.

Access to the Kubernetes API is limited by creating an RBAC Role or ClusterRole with

the appropriate API request verb and desired resource on which the action can be

applied. Tools exist that can help audit RBAC policies by printing users, groups, and

service accounts with their associated assigned Roles and ClusterRoles.

▲Return to Contents

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 27

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Audit Logging and Threat Detection

Audit logs capture attributed activity in the cluster. An effective logging solution and log

reviewing are necessary, not only for ensuring that services are operating and

configured as intended, but also for ensuring the security of the system. Systematic

security audit requirements mandate consistent and thorough checks of security

settings to help identify compromises. Kubernetes is capable of capturing audit logs for

tracking attributed cluster actions, and monitoring basic CPU and memory usage

information; however, it does not natively provide full featured monitoring or alerting

services.

Logging

System administrators running applications within Kubernetes should establish an

effective logging and monitoring system for their environment. Logging Kubernetes

events alone is not enough to provide a full picture of the actions occurring on the

system. Logging should be performed at all levels of the environment, including on the

host, application, container, container engine, image registry, api-server, and the cloud,

as applicable. Once captured, these logs should all be aggregated to a single service to

provide security auditors, network defenders, and incident responders a full view of the

actions taken throughout the environment.

Within the Kubernetes environment, some events that administrators should monitor/log

include the following:

 API request history

 Performance metrics

 Deployments

 Resource consumption

Key points

 Establish Pod baselines at creation to enable anomalous activity identification.

 Perform logging at all levels of the environment.

 Integrate existing network security tools for aggregate scans, monitoring, alerts,

and analysis.

 Set up fault-tolerant policies to prevent log loss in case of a failure.

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 28

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

 Operating system calls

 Protocols, permission changes

 Network traffic

 Pod scaling

 Volume mount actions

 Image and container modification

 Privilege changes

 Scheduled job (cronjob) creations and modifications

When administrators create or update a Pod, they should capture detailed logs of the

network communications, response times, requests, resource consumption, and any

other relevant metrics to establish a baseline. RBAC policy configurations should also

be reviewed periodically and whenever personnel changes occur in the organization’s

system administrators. Doing so ensures access controls remain in compliance with the

RBAC policy-hardening guidance outlined in the role-based access control section of

this guide.

Routine system security audits should include comparisons of current logs to the

baseline measurements of normal activities to identify significant changes in any of the

logged metrics and events. System administrators should investigate significant

changes to determine the root cause. For example, a significant increase in resource

consumption could be indicative of a change in application usage or the installation of

malicious processes such as a cryptominer.

Audits of internal and external traffic logs should be conducted to ensure all intended

security constraints on connections have been configured properly and are working as

intended. Administrators can also use these audits as systems evolve to evaluate where

external access may be restricted.

Streaming logs to an external logging service will help to ensure availability to security

professionals outside of the cluster, enabling them to identify abnormalities in as close

to real time as possible. If using this method, logs should be encrypted during transit

with TLS 1.2 or 1.3 to ensure cyber actors cannot access the logs in transit and gain

valuable information about the environment.

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 29

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Another precaution to take when utilizing an external log server is to configure the log

forwarder within Kubernetes with append-only access to the external storage. This

protects the externally stored logs from being deleted or overwritten from within the

cluster.

Kubernetes native audit logging configuration

The kube-apiserver resides on the Kubernetes control plane and acts as the front

end, handling internal and external requests for a cluster. Each request, whether

generated by a user, an application, or the control plane,

produces an audit event at each stage in its execution. When

an audit event registers, the kube-apiserver checks for an

audit policy file and applicable rule. If such a rule exists, the

server logs the event at the level defined by the first matched

rule. Kubernetes’ built-in audit logging capabilities perform no

logging by default.

Cluster administrators must write an audit policy YAML file to establish the rules and

specify the desired audit level at which to log each type of audit event. This audit policy

file is then passed to the kube-apiserver with the appropriate flags. For a rule to be

considered valid, it must specify one of the four audit levels:

 None

 Metadata

 Request

 RequestResponse

Logging all events at the RequestResponse level will give administrators the

maximum amount of information available for incident responders should a breach

occur. However, this may result in capturing base64-encoded Secrets in the logs. NSA

and CISA recommend reducing the logging level of requests involving Secrets to the

Metadata level to avoid capturing Secrets in logs.

Additionally, logging all other events at the highest level will produce a large quantity of

logs, especially in a production cluster. If an organization’s constraints require it, the

audit policy can be tailored to the environment, reducing the logging level of non-critical,

routine events. The specific rules necessary for such an audit policy will vary by

deployment. It is vital to log all security-critical events, paying close attention to the

Kubernetes audit

logging capabilities

are disabled by

default

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 30

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

organization’s specific cluster configuration and threat model to indicate where to focus

logging. The goal of refining an audit policy should be to remove redundancy, while still

providing a clear picture and attribution of the events occurring in the cluster.

For some examples of general critical and non-critical audit event types and stages, as

well as an example of an audit policy file that logs Secrets at the metadata level, and

all other events at the RequestResponse level, refer to Appendix M: Audit Policy

For an example where the kube-apiserver configuration file is located and an

example of the flags by which the audit policy file can be passed to the kube-

apiserver, refer to Appendix N: Example Flags to Enable Audit Logging. For

directions on how to mount the volumes and configure the host path, if necessary, refer

to Appendix N: Example Flags to Enable Audit Logging.

The kube-apiserver includes configurable logging and webhook backends for audit

logging. The logging backend writes the audit events specified to a log file, and the

webhook backend can be configured to send the file to an external HTTP API. The

--audit-log-path and --audit-log-maxage flags, set in the example in

Appendix N: Example Flags to Enable Audit Logging, are two examples of the flags

that can be used to configure the logging backend, which writes audit events to a file.

The log-path flag is the minimum configuration required to enable logging and the

only configuration necessary for the logging backend. The default format for these log

files is Java Script Object Notation (JSON), though this can also be changed if

necessary. Additional configuration options for the logging backend can be found in the

Kubernetes documentation. Kubernetes also provides a webhook backend option that

administrators can manually configure via a YAML file submitted to the kube-

apiserver to push logs to an external backend. An exhaustive list of the configuration

options, which can be set in the kube-apiserver for the webhook backend, can be

found in the Kubernetes documentation. Further details on how the webhook backend

works and how to set it up can also be found in the Kubernetes documentation. There

are also many external tools available to perform log aggregation, some of which are

discussed briefly in the following sections.

Worker node and container logging

There are many ways for logging capabilities to be configured within a Kubernetes

architecture. In the built-in method of log management, the kubelet on each node is

https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 31

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

responsible for managing logs. It stores and rotates log files locally based on its policies

for individual file length, storage duration, and storage capacity. These logs are

controlled by the kubelet and can be accessed from the command line. The following

command prints the logs of a container within a Pod:

kubectl logs [-f] [-p] POD [-c CONTAINER]

The -f flag may be used if the logs are to be streamed, the -p flag may be used if logs

from previous instances of a container exist and are desired, and the -c flag can be

used to specify a container if there are more than one in the Pod. If an error occurs that

causes a container, Pod, or node to die, the native logging solution in Kubernetes does

not provide a method to preserve logs stored in the failed object. NSA and CISA

recommend configuring a remote logging solution to preserve logs should a node fail.

Options for remote logging include:

Table III: Remote logging configuration

Remote logging option Reason to use Configuration implementation

Run a logging agent on

every node to push logs to

a backend

Gives the node the ability to

expose logs or push logs to a

backend, preserving them

outside of the node in the

case of a failure.

Configure an independent container in a

Pod to run as a logging agent, giving it

access to the node’s application log

files and configuring it to forward logs to

the organization’s SIEM.

Use a sidecar container in

each Pod to push logs to

an output stream

Used to push logs to separate

output streams. This can be a

useful option when

application containers write

multiple log files of different

formats.

Configure a sidecar container for each

log type and use them to redirect these

log files to their individual output

streams, where the kubelet can

manage them. The node-level logging

agent can then forward these logs onto

the SIEM or other backend.

Use a logging agent

sidecar in each Pod to push

logs to a backend

When more flexibility is

needed than the node-level

logging agent can provide.

Configure for each Pod to push logs

directly to the backend. This is a

common method for attaching third-

party logging agents and backends.

Push logs directly to a

backend from within an

application

Allows logs to go directly to

the aggregation platform. Can

be useful if the organization

has separate teams

responsible for managing

application security vs the

Kubernetes platform security.

Kubernetes does not have built-in

mechanisms for exposing or pushing

logs to a backend directly.

Organizations will need to either build

this functionality into their application or

attach a reputable third-party tool to

enable this.

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 32

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

To ensure continuity of logging agents across worker nodes, it is common to run them

as a DaemonSet. Configuring a DaemonSet for this method ensures that there is a copy

of the logging agent on every node at all times and that any changes made to the

logging agent are consistent across the cluster.

Large organizations with multiple teams running their own Kubernetes clusters should

establish logging requirements and a standard architecture to ensure that all teams

have an effective solution in place.

Seccomp: audit mode

In addition to the node and container logging previously described, it can be highly

beneficial to log system calls. One method for auditing container system calls in

Kubernetes is to use the seccomp tool. This tool is disabled by default but can be used

to limit a container’s system call abilities, thereby lowering the kernel’s attack surface.

Seccomp can also log what calls are being made by using an audit profile.

A custom seccomp profile defines which system calls are allowed, denied, or logged,

and default actions for calls not specified. To enable a custom seccomp profile within a

Pod, Kubernetes admins can write their seccomp profile JSON file to the

/var/lib/kubelet/seccomp/ directory and add a seccompProfile to the Pod’s

securityContext.

A custom seccompProfile should also include two fields: Type: Localhost and

localhostProfile: myseccomppolicy.json. Logging all system calls can help

administrators know what system calls are needed for standard operations allowing

them to restrict the seccomp profile further without losing system functionality. It can

also help administrators establish a baseline for a Pod’s standard operation patterns,

allowing them to identify any major deviances from this pattern that could be indicative

of malicious activity.

Syslog

Kubernetes, by default, writes kubelet logs and container runtime logs to journald if

the service is available. If organizations wish to utilize syslog utilities—or to collect logs

from across the cluster and forward them to a syslog server or other log storage and

aggregation platform—they can configure that capability manually. Syslog protocol

defines a log message-formatting standard. Syslog messages include a header and a

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 33

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

message written in plaintext. Syslog daemons such as syslog-ng® and rsyslog are

capable of collecting and aggregating logs from across a system in a unified format.

Many Linux operating systems by default use rsyslog or journald—an event logging

daemon that optimizes log storage and output logs in syslog format via journalctl. The

syslog utility logs events, on nodes running certain Linux distributions by default at the

host level.

Containers running these Linux distributions will, by default, collect logs using syslog as

well. Syslog utilities store logs in the local file system on each applicable node or

container unless a log aggregation platform is configured to collect them. The syslog

daemon or another such tool should be configured to aggregate both these and all other

logs being collected across the cluster and forward them to an external backend for

storage and monitoring.

SIEM platforms

Security information and event management (SIEM) software collects logs from across

an organization’s network. It brings together firewall logs, application logs, and more,

parsing them out to provide a centralized platform from which analysts can monitor

system security. SIEM tools have variations in their capabilities. Generally, these

platforms provide log collection, aggregation, threat detection, and alerting capabilities.

Some include machine-learning capabilities, which can better predict system behavior

and help to reduce false alerts. Organizations using these platforms in their environment

should integrate them with Kubernetes to better monitor and secure clusters. Open-

source platforms for managing logs from a Kubernetes environment exist as alternatives

to SIEM platforms.

Containerized environments have many interdependencies between nodes, Pods,

containers, and services. In these environments, Pods and containers are constantly

being deleted and redeployed on different nodes. This type of environment presents an

extra challenge for traditional SIEMs, which typically use IP addresses to correlate logs.

Even next-generation SIEM platforms may not always be suited to the complex

Kubernetes environment. However, as Kubernetes has emerged as the most widely

used container orchestration platform, many of the organizations developing SIEM tools

have developed variations of their products specifically designed to work with the

Kubernetes environment, providing full monitoring solutions for these containerized

environments. Administrators should be aware of their platform’s capabilities and

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 34

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

ensure that their logging sufficiently captures the environment to support future incident

responses.

Service meshes

Service meshes are platforms that streamline micro-service communications within an

application by allowing for the logic of these communications to be coded into the

service mesh rather than within each micro-service. Coding this communication logic

into individual micro-services is difficult to scale, difficult to debug as failures occur, and

difficult to secure. Using a service mesh can simplify this coding for developers. Log

collection at this level can also give cluster administrators insight into the standard

service-to-service communication flow throughout the cluster. The mesh can:

 Redirect traffic when a service is down,

 Gather performance metrics for optimizing communications,

 Allow management of service-to-service communication encryption,

 Collect logs for service-to-service communication,

 Collect logs from each service,

 Help developers diagnose problems and failures of micro-services or

communication mechanisms, and

 Help with migrating services to hybrid or multi-cloud environments.

While service meshes are not necessary, they are an option that is highly suitable to the

Kubernetes environment. Their logging capabilities can also be useful in mapping the

service-to-service communications, helping administrators see what their standard

cluster operation looks like and identify anomalies easier. Managed Kubernetes

services often include their own service mesh; however, several other platforms are

also available and, if desired, are highly customizable.

Another major benefit of modern service meshes is encryption of service-to-service

communications. Many service meshes manage keys and generate and rotate

certificates, allowing for secure TLS authentication between services, without requiring

developers to set this up for each individual service and manage it themselves. Some

service meshes even perform this service-to-service encryption by default. If

administrators deploy a service mesh within a Kubernetes cluster, it is important to keep

up with updates and security alerts for the service mesh as illustrated in the following

figure:

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 35

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Figure 7: Cluster leveraging service mesh to integrate logging with network security

Fault tolerance

Organizations should put fault tolerance policies in place. These policies could differ

depending on the specific Kubernetes use case. One such policy is to allow new logs to

overwrite the oldest log files, if absolutely necessary, in the event of storage capacity

being exceeded. Another such policy that can be used if logs are being sent to an

external service is to establish a place for logs to be stored locally if a communication

loss or an external service failure occurs. Once communication to the external service is

restored, a policy should be in place for the locally stored logs to be pushed up to the

external server.

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 36

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Threat Detection

An effective logging solution comprises two critical components: collecting all necessary

data and then actively monitoring the collected data for red flags in as close to real time

as possible. The best logging solution in the world is useless if the data is never

examined. Much of the process of log examination can be automated; however, when

either writing log parsing policies or manually examining logs, it is vital to know what to

look for. When attackers try to exploit the cluster, they will leave traces of their actions in

the logs.

The following table contains some of the ways attackers may try to exploit the cluster

and how that may present in the logs. (Caveat: This table lists some known suspicious

indicators. Administrators should also be aware of, and alert to, specific concerns and

emerging threats in their environments. The most effective alerts are tailored to identify

abnormal activity for a specific cluster.)

Table IV: Detection recommendations

Attacker Action Log Detection

Attackers may try to deploy a Pod or container to

run their own malicious software or to use as a

staging ground/pivot point for their attack.

Attackers may try to masquerade their deployment

as a legitimate image by copying names and

naming conventions. They may also try to start a

container with root privileges to escalate privileges.

Watch for atypical Pod and container deployments.

Use image IDs and layer hashes for comparisons

of suspected image deployments against the valid

images. Watch for Pods or application containers

being started with root permissions

Attackers may try to import a malicious image into

the victim organization’s registry, either to give

themselves access to their image for deployment,

or to trick legitimate parties into deploying their

malicious image instead of the legitimate ones.

This may be detectable in the container engine or

image repository logs. Network defenders should

investigate any variations from the standard

deployment process. Depending on the specific

case this may also be detectible through changes

in containers’ behavior after being redeployed

using the new image version.

If an attacker manages to exploit an application to

the point of gaining command execution

capabilities on the container, then depending on

the configuration of the Pod, they may be able to

make API requests from within the Pod, potentially

Unusual API requests (from the Kubernetes audit

logs) or unusual system calls (from seccomp logs)

originating from inside a Pod. This could also show

as pod creation requests registering a Pod IP

address as its source IP.

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 37

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Attacker Action Log Detection

escalating privileges, moving laterally within the

cluster, or breaking out onto the host.

Attackers who have gained initial access to a

Kubernetes cluster will likely start attempting to

penetrate further into the cluster, which will require

interacting with the kube-apiserver.

While they work to determine what initial

permissions they have, they may end up making

several failed requests to the API server. Repeated

failed API requests and request patterns that are

atypical for a given account would be red flags.

Attackers may attempt to compromise a cluster in

order to use the victim’s resources to run their own

cryptominer (i.e., a cryptojacking attack).

If an attacker were to successfully start a

cryptojacking attack it would likely show in the logs

as a sudden spike in resource consumption.

Attackers may attempt to use anonymous accounts

to avoid attribution of their activities in the cluster.
Watch for any anonymous actions in the cluster.

Attackers may try to add a volume mount to a

container they have compromised or are creating,

to gain access to the host

Volume mount actions should be closely monitored

for abnormalities.

Attackers with the ability to create scheduled jobs

(aka Kubernetes CronJobs) may attempt to use

this to get Kubernetes to automatically and

repetitively run malware on the cluster [8].

Scheduled job creations and modifications should

be closely monitored.

The enormous quantity of logs generated in an environment such as this makes it

infeasible for administrators to review all of the logs manually and even more important

for administrators to know what indicators to look for. This knowledge can be used to

configure automated responses and refine the criteria for triggering alerts.

Alerting

Kubernetes does not natively support alerting; however, several monitoring tools with

alerting capabilities are compatible with Kubernetes. If Kubernetes administrators

choose to configure an alerting tool to work within a Kubernetes environment,

administrators can use several metrics to monitor and configure alerts.

Examples of actionable events that could trigger alerts include but are not limited to:

 Low disk space on any of the machines in the environment,

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 38

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

 Available storage space on a logging volume running low,

 External logging service going offline,

 A Pod or application running with root permissions,

 Requests being made by an account for resources they do not have permission

for,

 Anonymous requests being submitted to the API server,

 Pod or Worker Node IP addresses being listed as the source ID of a Pod creation

request,

 Unusual system calls or failed API calls,

 User/admin behavior that is abnormal (i.e. at unusual times or from an unusual

location), and

 Significant deviations from the standard operation metrics baseline.

In their 2021 Kubernetes blog post, contributors to the Kubernetes project made the

following three additions to this list [7]:

 Changes to a Pod’s securityContext,

 Updates to admission controller configs, and

 Accessing certain sensitive files/URLs.

Where possible, systems should be configured to take steps to mitigate compromises

while administrators respond to alerts. In the case of a Pod IP being listed as the source

ID of a Pod creation request, automatically evicting the Pod is one mitigation that could

be implemented to keep the application available but temporarily stop any compromises

of the cluster. Doing so would allow a clean version of the Pod to be rescheduled onto

one of the nodes. Investigators could examine the logs to determine if a breach

occurred and, if so, how the malicious actors executed the compromise so that a patch

can be deployed. Automating such responses can help improve security professionals’

response time to critical events.

Tools

Kubernetes does not natively include extensive auditing capabilities. However, the

system is built to be extensible, allowing users the freedom to develop their own custom

solution or to choose an existing add-on that suits their needs. Kubernetes cluster

administrators commonly connect additional backend services to their cluster to perform

additional functions for users, such as extended search parameters, data mapping

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 39

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

features, and alerting functionality. Organizations that already use SIEM platforms can

integrate Kubernetes with these existing capabilities. Open-source monitoring tools—

such as the Cloud Native Computing Foundation’s Prometheus®, Grafana Labs’

Grafana®, and Elasticsearch’s Elastic Stack (ELK)®—are also available. The tools can

conduct event monitoring, run threat analytics, manage alerting, and collect resource

isolation parameters, historical usage, and network statistics on running containers.

Scanning tools can be used when auditing the access control and permission

configurations to identify risky permission configurations in RBAC.

NSA and CISA encourage organizations utilizing Intrusion Detection Systems (IDSs) on

their existing environment to consider integrating that service into their Kubernetes

environment as well. This integration would allow an organization to monitor for—and

potentially kill containers showing signs of—unusual behavior so the containers can be

restarted from the initial clean image. Many CSPs also provide container monitoring

services for those wanting more managed and scalable solutions.

▲Return to Contents

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 40

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Upgrading and application security practices

Following the hardening guidance outlined in this document is a step toward ensuring

the security of applications running on Kubernetes orchestrated containers. However,

security is an ongoing process, and it is vital to keep up with patches, updates, and

upgrades. The specific software components vary depending on the individual

configuration, but each piece of the overall system must be kept as secure as possible.

This includes updating Kubernetes, hypervisors, virtualization software, plugins,

operating systems on which the environment is running, applications running on the

servers, all elements of the organization’s continuous integration/continuous delivery

(CI/CD) pipeline and any other software hosted in the environment. Companies who

need to maintain 24/7 uptime for their services can consider using high-availability

clusters, so that services can be off-loaded from physical machines one at a time,

allowing for firmware, kernel, and operating system updates to be deployed in a timely

manner while still maintaining service availability.

The Center for Internet Security (CIS) publishes benchmarks for securing software.

Administrators should adhere to the CIS benchmarks for Kubernetes and any other

relevant system components. Administrators should periodically check to ensure their

system's security is compliant with the current cybersecurity best practices. Periodic

vulnerability scans and penetration tests should be performed on the various system

components to proactively look for insecure configurations and zero-day vulnerabilities.

Any discoveries should be promptly remediated before potential cyber actors can

discover and exploit them.

As administrators deploy updates, they should also keep up with uninstalling any old,

unused components from the environment and deployment pipeline. This practice will

help reduce the attack surface and the risk of unused tools remaining on the system

and falling out of date. Using a managed Kubernetes service can help to automate

upgrades and patches for Kubernetes, operating systems, and networking protocols.

However, administrators must still ensure that their deployments are up to date and

developers properly tag new images to avoid accidental deployments of outdated

images.

▲Return to Contents

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 41

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Works cited

[1] Center for Internet Security, "CIS Benchmarks Securing Kubernetes," 2021. [Online].

Available: https://cisecurity.org/benchmark/kubernetes/.

[2] DISA, "Kubernetes STIG," 2021. [Online]. Available:

https://public.cyber.mil/stigs/downloads/.

[3] The Linux Foundation, "Kubernetes Documnetation," 2021. [Online]. Available:

https://kubernetes.io/docs/ . [Accessed 02 2021].

[4] The Linux Foundation, "11 Ways (Not) to Get Hacked," 18 07 2018. [Online]. Available:

https://kubernetes.io/blog/2018/07/18/11-ways-not-to-get-hacked/#10-scan-images-and-run-

ids. [Accessed 03 2021].

[5] MITRE, "MITRE ATT&CK," 2021. [Online]. Available:

https://attack.mitre.org/techniques/T1552/005/. [Accessed 7 May 2021].

[6] CISA, "Analysis Report (AR21-013A)," 14 January 2021. [Online]. Available:

https://www.cisa.gov/uscert/ncas/analysis-reports/ar21-013a. [Accessed 26 May 2021].

[7] Kubernetes, "A Closer Look at NSA/CISA Kubernetes Hardening Guidance," 5 October

2021. [Online]. Available: https://www.kubernetes.io/blog/2021/10/05/nsa-cisa-kubernetes-

hardening-guidance/ 2021.

[8] MITRE ATT&CK, "Scheduled Task/Job: Container Orchestration Job," 27 7 2021. [Online].

Available: https://attack.mitre.org/techniques/T1053/007/. [Accessed 9 11 2021].

[9] The Kubernetes Authors, "Pod Security Admission," [Online]. Available:

https://kubernetes.io/docs/concepts/security/pod-security-admission/.

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 42

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Appendix A: Example Dockerfile for non-root application

The following example is a Dockerfile that runs an application as a non-root user with

non-group membership. The lines highlighted in red below are the portion specific to

using non-root.

FROM ubuntu:latest

#Update and install the make utility

RUN apt update && apt install -y make

#Copy the source from a folder called “code” and build the application with

the make utility

COPY . /code

RUN make /code

#Create a new user (user1) and new group (group1); then switch into that

user’s context

RUN useradd user1 && groupadd group1

USER user1:group1

#Set the default entrypoint for the container

CMD /code/app

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 43

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Appendix B: Example deployment template for read-only file

system

The following example is a Kubernetes deployment template that uses a read-only root

file system. The lines highlighted in red below are the portion specific to making the

container’s filesystem read-only. The lines highlighted in blue are the portion showing

how to create a writeable volume for applications requiring this capability.

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 app: web

 name: web

spec:

 selector:

 matchLabels:

 app: web

 template:

 metadata:

 labels:

 app: web

 name: web

 spec:

 containers:

 - command: ["sleep"]

 args: ["999"]

 image: ubuntu:latest

 name: web

 securityContext:

 readOnlyRootFilesystem: true

 volumeMounts:

 - mountPath: /writeable/location/here

 name: volName

 volumes:

 - emptyDir: {}

 name: volName

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 44

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Appendix C: Pod Security Policies (deprecated)

A Pod Security Policy (PSP) is a cluster-wide policy that specifies security

requirements/defaults for Pods to execute within the cluster. While security mechanisms

are often specified within Pod/deployment configurations, PSPs establish a minimum

security threshold to which all Pods must adhere. Some PSP fields provide default

values used when a Pod’s configuration omits a field. Other PSP fields are used to deny

the creation of non-conformant Pods. PSPs are enforced through a Kubernetes

admission controller, so PSPs can only enforce requirements during Pod creation.

PSPs do not affect Pods already running in the cluster.

PSPs are useful technical controls to enforce security measures in the cluster. PSPs

are particularly effective for clusters managed by admins with tiered roles. In these

cases, top-level admins can impose defaults to enforce requirements on lower-level

admins. NSA and CISA encourage organizations to adapt the Kubernetes hardened

PSP template in Appendix D: Example Pod Security Policy to their needs. The

following table describes some widely applicable PSP components.

Table V: Pod Security Policy components3

Field Name(s) Usage Recommendations

privileged
Controls whether Pods can run
privileged containers.

Set to false.

hostPID, hostIPC
Controls whether containers can
share host process namespaces.

Set to false.

hostNetwork Controls whether containers can
use the host network.

Set to false.

allowedHostPaths Limits containers to specific paths
of the host file system.

Use a “dummy” path name (such
as “/foo” marked as read-only).
Omitting this field results in no
admission restrictions being placed
on containers.

readOnlyRootFilesystem Requires the use of a read only
root file system.

Set to true when possible.

runAsUser, runAsGroup,
supplementalGroups,
fsGroup

Controls whether container
applications can run with root
privileges or with root group
membership.

- Set runAsUser to
MustRunAsNonRoot.
- Set runAsGroup to non-zero (See
the example in Appendix D:
Example Pod Security Policy).
- Set supplementalGroups to non-
zero (see example in appendix D).

3 https://kubernetes.io/docs/concepts/policy/pod-security-policy

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 45

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Field Name(s) Usage Recommendations

- Set fsGroup to non-zero (See the
example in Appendix D: Example
Pod Security Policy).

allowPrivilegeEscalation Restricts escalation to root
privileges.

Set to false. This measure is
required to effectively enforce
“runAsUser: MustRunAsNonRoot”
settings.

seLinux Sets the SELinux context of the
container.

If the environment supports
SELinux, consider adding SELinux
labeling to further harden the
container.

AppArmor annotations Sets the AppArmor profile used by
containers.

Where possible, harden
containerized applications by
employing AppArmor to constrain
exploitation.

seccomp annotations Sets the seccomp profile used to
sandbox containers.

Where possible, use a seccomp
auditing profile to identify required
syscalls for running applications;
then enable a seccomp profile to
block all other syscalls.

Note: PSPs do not automatically apply to the entire cluster for the following reasons:

 First, before PSPs can be applied, the PodSecurityPolicy plugin must be enabled

for the Kubernetes admission controller, part of kube-apiserver.

 Second, the policy must be authorized through RBAC. Administrators should

verify the correct functionality of implemented PSPs from each role within their

cluster’s organization.

Administrators should be cautious in environments with multiple PSPs as Pod creation

adheres to the least restrictive authorized policy. The following command describes all

Pod Security Policies for the given namespace, which can help to identify problematic

overlapping policies:

kubectl get psp -n <namespace>

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 46

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Appendix D: Example Pod Security Policy

The following example is a Kubernetes Pod Security Policy that enforces strong security

requirements for containers running in the cluster. This example is based on official

Kubernetes documentation: https://kubernetes.io/docs/concepts/policy/pod-security-

policy/. Administrators are encouraged to tailor the policy to meet their organization’s

requirements.

apiVersion: policy/v1beta1

kind: PodSecurityPolicy

metadata:

 name: restricted

 annotations:

 seccomp.security.alpha.kubernetes.io/allowedProfileNames:

'docker/default,runtime/default'

 apparmor.security.beta.kubernetes.io/allowedProfileNames:

'runtime/default'

 seccomp.security.alpha.kubernetes.io/defaultProfileName:

'runtime/default'

 apparmor.security.beta.kubernetes.io/defaultProfileName:

'runtime/default'

spec:

 privileged: false # Required to prevent escalations to root.

 allowPrivilegeEscalation: false

 requiredDropCapabilities:

 - ALL

 volumes:

 - 'configMap'

 - 'emptyDir'

 - 'projected'

 - 'secret'

 - 'downwardAPI'

 - 'persistentVolumeClaim' # Assume persistentVolumes set up by admin

are safe

 hostNetwork: false

 hostIPC: false

 hostPID: false

 runAsUser:

 rule: 'MustRunAsNonRoot' # Require the container to run without root

 seLinux:

 rule: 'RunAsAny' # This assumes nodes are using AppArmor rather than

SELinux

 supplementalGroups:

 rule: 'MustRunAs'

 ranges: # Forbid adding the root group.

 - min: 1

 max: 65535

 runAsGroup:

 rule: 'MustRunAs'

 ranges: # Forbid adding the root group.

 - min: 1

 max: 65535

 fsGroup:

https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 47

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

 rule: 'MustRunAs'

 ranges: # Forbid adding the root group.

 - min: 1

 max: 65535

 readOnlyRootFilesystem: true

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 48

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Appendix E: Example namespace

The following example is for each team or group of users, a Kubernetes namespace

can be created using either a kubectl command or YAML file. Any name with the

prefix kube- should be avoided as it may conflict with Kubernetes system reserved

namespaces.

Kubectl command to create a namespace:

kubectl create namespace <insert-namespace-name-here>

To create namespace using YAML file, create a new file called my-namespace.yaml

with the contents:

apiVersion: v1

kind: Namespace

metadata:

 name: <insert-namespace-name-here>

Apply the namespace using:

kubectl create –f ./my-namespace.yaml

To create new Pods in an existing namespace, switch to the desired namespace using:

kubectl config use-context <insert-namespace-here>

Apply new deployment using:

kubectl apply -f deployment.yaml

Alternatively, the namespace can be added to the kubectl command using:

kubectl apply -f deployment.yaml --namespace=<insert-namespace-here>

or specify namespace: <insert-namespace-here> under metadata in the YAML

declaration.

Once created, resources cannot be moved between namespaces. The resource must

be deleted, then created in the new namespace.

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 49

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Appendix F: Example network policy

Network policies differ depending on the network plugin used. The following example is

a network policy to limit access to the nginx service to Pods with the label access using

the Kubernetes documentation: https://kubernetes.io/docs/tasks/administer-

cluster/declare-network-policy/

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: example-access-nginx

 namespace: prod #this can any namespace or be left out if no

namespace is used

spec:

 podSelector:

 matchLabels:

 app: nginx

 ingress:

 -from:

 -podSelector:

 matchLabels:

 access: “true”

The new NetworkPolicy can be applied using:

kubectl apply -f policy.yaml

A default deny all ingress policy:

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: deny-all-ingress

spec:

 podSelector: {}

 policyType:

 - Ingress

A default deny all egress policy:

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: deny-all-egress

spec:

 podSelector: {}

 policyType:

 - Egress

https://kubernetes.io/docs/tasks/administer-cluster/declare-network-policy/
https://kubernetes.io/docs/tasks/administer-cluster/declare-network-policy/

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 50

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Appendix G: Example LimitRange

LimitRange support is enabled by default in Kubernetes 1.10 and newer. The following

YAML file specifies a LimitRange with a default request and limit, as well as a min and

max request, for each container.

apiVersion: v1

kind: LimitRange

metadata:

 name: cpu-min-max-demo-lr

spec:

 limits

 - default:

 cpu: 1

 defaultRequest:

 cpu: 0.5

 max:

 cpu: 2

 min:

 cpu 0.5

 type: Container

A LimitRange can be applied to a namespace with:

kubectl apply -f <example-LimitRange>.yaml --namespace=<Enter-Namespace>

After this example LimitRange configuration is applied, all containers created in the

namespace are assigned the default CPU request and limit if not specified. All

containers in the namespace must have a CPU request greater than or equal to the

minimum value and less than or equal to the maximum CPU value or the container will

not be instantiated.

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 51

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Appendix H: Example ResourceQuota

ResourceQuota objects to limit aggregate resource usage within a namespace are

created by applying a YAML file to a namespace or specifying requirements in the

configuration file of Pods. The following example is based on official Kubernetes

documentation: https://kubernetes.io/docs/tasks/administer-cluster/manage-

resources/quota-memory-cpu-namespace/

Configuration file for a namespace:

apiVersion: v1

kind: ResourceQuota

metadata:

 name: example-cpu-mem-resourcequota

spec:

 hard:

 requests.cpu: “1”

 requests.memory: 1Gi

 limits.cpu: “2”

 limits.memory: 2Gi

This ResourceQuota can be applied with:

kubectl apply -f example-cpu-mem-resourcequota.yaml --

namespace=<insert-namespace-here>

This ResourceQuota places the following constraints on the chosen namespace:

 Every container must have a memory request, memory limit, CPU request, and

CPU limit,

 Aggregate memory request for all containers should not exceed 1 GiB,

 Total memory limit for all containers should not exceed 2 GiB,

 Aggregate CPU request for all containers should not exceed 1 CPU, and

 Total CPU limit for all containers should not exceed 2 CPUs.

https://kubernetes.io/docs/tasks/administer-cluster/manage-resources/quota-memory-cpu-namespace/
https://kubernetes.io/docs/tasks/administer-cluster/manage-resources/quota-memory-cpu-namespace/

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 52

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Appendix I: Example encryption

To encrypt Secret data at rest, the following encryption configuration file provides an

example to specify the type of encryption desired and the encryption key. Storing the

encryption key in the encryption file only slightly improves security. The Secrets will be

encrypted, but the key will be accessible in the EncryptionConfiguration file. This

example is based on official Kubernetes documentation:

https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/.

apiVersion: apiserver.config.k8s.io/v1

kind: EncryptionConfiguration

resources:

 - resources:

 - secrets

 providers:

 - aescbc:

 keys:

 - name: key1

 secret: <base 64 encoded secret>

 - identity: {}

To enable encryption at rest with this encryption file, restart the API server with the --

encryption-provider-config flag set with the location to the configuration file.

https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 53

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Appendix J: Example KMS configuration

To encrypt Secrets with a key management service (KMS) provider plugin, the following

example encryption configuration YAML file can be used to set the properties for the

provider. This example is based on official Kubernetes documentation:

https://kubernetes.io/docs/tasks/administer-cluster/kms-provider/.

apiVersion: apiserver.config.k8s.io/v1

kind: EncryptionConfiguration

resources:

 - resources:

 - secrets

 providers:

 - kms:

 name: myKMSPlugin

 endpoint: unix://tmp/socketfile.sock

 cachesize: 100

 timeout: 3s

 - identity: {}

To configure the API server to use the KMS provider, set the --encryption-

provider-config flag with the location of the configuration file and restart the API

server.

To switch from a local encryption provider to KMS, add the KMS provider section of the

EncryptionConfiguration file above the current encryption method, as shown below.

apiVersion: apiserver.config.k8s.io/v1

kind: EncryptionConfiguration

resources:

 - resources:

 - secrets

 providers:

 - kms:

 name: myKMSPlugin

 endpoint: unix://tmp/socketfile.sock

 cachesize: 100

 timeout: 3s

 - aescbc:

 keys:

 - name: key1

 secret: <base64 encoded secret>

Restart the API server and run the command below to re-encrypt all Secrets with the

KMS provider.

kubectl get secrets --all-namespaces -o json | kubectl replace -f -

https://kubernetes.io/docs/tasks/administer-cluster/kms-provider/

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 54

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Appendix K: Example pod-reader RBAC Role

To create the example pod-reader Role, create a YAML file with the following contents:

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 namespace: your-namespace-name

 name: pod-reader

rules:

- apiGroups: [“”] # “” indicates the core API group

 resources: [“pods”]

 verbs: [“get”, “watch”, “list”]

Apply the Role using:

kubectl apply --f role.yaml

To create the example global-pod-reader ClusterRole:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata: default

 # “namespace” omitted since ClusterRoles are not bound to a

namespace

 name: global-pod-reader

rules:

- apiGroups: [“”] # “” indicates the core API group

 resources: [“pods”]

 verbs: [“get”, “watch”, “list”]

Apply the Role using:

kubectl apply --f clusterrole.yaml

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 55

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Appendix L: Example RBAC RoleBinding and

ClusterRoleBinding

To create a RoleBinding, create a YAML file with the following contents:

apiVersion: rbac.authorization.k8s.io/v1

This role binding allows “jane” to read Pods in the “your-

namespace-name”

namespace.

You need to already have a Role names “pod-reader” in that

namespace.

kind: RoleBinding

metadata:

 name: read-pods

 namespace: your-namespace-name

subjects:

You can specify more than one “subject”

- kind: User

 name: jane # “name” is case sensitive

 apiGroup: rbac.authorization.k8s.io

roleRef:

 # “roleRef” specifies the binding to a Role/ClusterRole

 # kind: Role # this must be a Role or ClusterRole

 # this must match the name of the Role or ClusterRole you wish to

bind

 # to

 name: pod-reader

 apiGroup: rbac.authorization.k8s.io

Apply the RoleBinding using:

kubectl apply --f rolebinding.yaml

To create a ClusterRoleBinding, create a YAML file with the following contents:

apiVersion: rbac.authorization.k8s.io/v1

This cluster role binging allows anyone in the “manager” group to

read

Pod information in any namespace.

kind: ClusterRoleBinding

metadata:

 name: global-pod-reader

subjects:

You can specify more than one “subject”

- kind: Group

 name: manager # Name is case sensitive

 apiGroup: rbac.authorization.k8s.io

roleRef:

 # “roleRef” specifies the binding to a Role/ClusterRole

 kind: ClusterRole # this must be a Role or ClusterRole

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 56

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

 name: global-pod-reader # this must match the name of the Role or

ClusterRole you wish to bind to

 apiGroup: rbac.authorization.k8s.io

Apply the ClusterRoleBinding using:

kubectl apply --f clusterrolebinding.yaml

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 57

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Appendix M: Audit Policy
The following example is an Audit Policy that logs requests involving Kubernetes

Secrets at the Metadata level, and all other audit events at the highest level:

apiVersion: audit.k8s.io/v1

kind: Policy

rules:

 - level: Metadata

 resources:

- group:”” #this refers to the core API group

resources: [“secrets”]

 - level: RequestResponse

 # This audit policy logs events involving secrets at the metadata

level, and all other audit events at the RequestResponse level

If an organization has the resources available to store, parse, and examine a large

number of logs, then logging all events, other than those involving Secrets, at the

highest level is a good way of ensuring that, when a breach occurs, all necessary

contextual information is present in the logs. If resource consumption and availability

are a concern, then more logging rules can be established to lower the logging level of

non-critical components and routine non-privileged actions, as long as audit logging

requirements for the system are being met. As Kubernetes API events consist of

multiple stages, logging rules can also specify stages of the request to omit from the

log. By default, Kubernetes captures audit events at all stages of the request. The four

possible stages of Kubernetes API request are:

 RequestReceived

 ResponseStarted

 ResponseComplete

 Panic

Because clusters in organizations expand to meet growing needs, it is important to

ensure that the audit policy can still meet logging needs. To ensure that elements of the

environment are not overlooked, the audit policy should end with a catch-all rule to log

events that the previous rules did not log. Kubernetes logs audit events based on the

first rule in the audit policy that applies to the given event; therefore, it is important to be

aware of the order in which potentially overlapping rules are written. The rule regarding

Secrets should be near the top of the policy file to ensure. This ensures that any

overlapping rules do not inadvertently capture Secrets due to logging at a higher level

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 58

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

than the Metadata level. Similarly, the catch-all rule should be the last rule in the policy

to ensure that all other rules are matched first.

What follows are some examples of critical event types that should be logged at the

Request or RequestResponse level. In addition are examples of less critical event

types and stages that can be logged at a lower level if necessary to reduce redundancy

in the logs and increase the organization’s ability to effectively review the logs as close

to real time as possible.

Critical:

 Pod deployments and alterations

 Authentication requests

 Modifications to RBAC resources (clusterrolebindings, clusterroles, etc.)

 Scheduled job creations

 Edits to Pod Security Admissions or Pod Security Policies

Noncritical:

 RequestRecieved stage

 Authenticated requests to non-critical, routinely accessed resources

For an example of how to establish these rules, refer to the official Kubernetes

documentation: https://kubernetes.io/docs/tasks/debug-application-cluster/audit/.

https://kubernetes.io/docs/tasks/debug-application-cluster/audit/

U/OO/168286-21 | PP-22-0324 | August 2022 Ver. 1.2 59

National
Security
Agency

Cybersecurity
and Infrastructure
Security Agency Kubernetes Hardening Guidance

National
Security
Agency

Appendix N: Example Flags to Enable Audit Logging
In the control plane, open the kube-apiserver.yaml file in a text editor. Editing the

kube-apiserver configuration requires administrator privileges.

sudo vi /etc/kubernetes/manifests/kube-apiserver.yaml

Add the following text to the kube-apiserver.yaml file:

 --audit-policy-file=/etc/kubernetes/policy/audit-policy.yaml

 --audit-log-path=/var/log/audit.log

 --audit-log-maxage=1825

The audit-policy-file flag should be set with the path to the audit policy, and the

audit-log-path flag should be set with the desired secure location for the audit logs

to be written to. Other additional flags exist, such as the audit-log-maxage flag

shown here, which stipulates the maximum number of days the logs should be kept,

and flags for specifying the maximum number of audit log files to retain, max log file size

in megabytes, etc. The only flags necessary to enable logging are the audit-policy-

file and audit-log-path flags. The other flags can be used to configure logging to

match the organization’s policies.

If a user’s kube-apiserver is run as a Pod, then it is necessary to mount the volume

and configure hostPath of the policy and log file locations for audit records to be

retained. This can be done by adding the following sections to the kube-

apiserver.yaml file as noted in the Kubernetes documentation:

https://kubernetes.io/docs/tasks/debug-application-cluster/audit/

volumeMounts:

 -mountPath: /etc/kubernetes/audit-policy.yaml

 name: audit

 readOnly: true

 -mountPath: /var/log/audit.log

 name: audit-log

 readOnly: false

volumes:

- hostPath:

 path: /etc/kubernetes/audit-policy.yaml

 type: File

name: audit

 - hostPath:

 path: /var/log/audit.log

 type: FileOrCreate

name: audit-log

